Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter‐ and intra‐specific), pollinators and insect herbivores on plant performance (i.e., viable seed production). We compared the inclusion of interaction effects as aggregate guild‐level terms versus terms specific to taxonomic groups. We found that a continuum from positive to negative interactions, containing mostly guild‐level effects and a few strong taxonomic‐specific effects, was sufficient to describe plant performance. While interactions with herbivores and intraspecific plants varied from weakly negative to weakly positive, heterospecific plants mainly promoted competition and pollinators facilitated plants. The consistency of these empirical findings over 3 years suggests that including the guild‐level effects and a few taxonomic‐specific groups rather than all pairwise and high‐order interactions, can be sufficient for accurately describing species variation in plant performance across natural communities.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources. Here we describe the AusTraits Plant Dictionary (APD), a new data source of terms that extends the trait definitions included in a recent trait database, AusTraits. The development process of the APD included three steps: review and formalisation of the scope of each trait and the accompanying trait description; addition of trait metadata; and publication in both human and machine-readable forms. Trait definitions include keywords, references, and links to related trait concepts in other databases, enabling integration of AusTraits with other sources. The APD will both improve the usability of AusTraits and foster the integration of trait data across global and regional plant trait databases.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
